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Abstract

This technical report describes the work conducted by the Cyber Technology Institute at De Montfort

University, as part of the Innovate UK-funded research project FLOURISH, and represents the final

deliverable agreed for the duration of this project. The scope of this technical report is the description

of an Intrusion Detection System (IDS) designed to detect Spoofing and Jamming attacks in a Connected

Autonomous Vehicles (CAVs) environment, with especial focus on vehicles platoon communication. This

report also presents the evaluation results of the implemented IDS both for known and unknown attacks.

I. INTRODUCTION

The deployment of Connected Autonomous Vehicles (CAVs) is considered the key factor to

enhance road safety, increase the infrastructure efficiency, and reduce fuel consumption in Intel-

ligent Transportation Systems (ITS) [5]. The Adaptive Cruise Control (ACC) can automatically

regulate parameters such as speed changes and gaps between vehicles by using on-board sensors.

Vehicle platooning is an application for semi-autonomous cooperative driving that comprises

a leading vehicle and a group of following vehicles. The motion of the vehicles forming a

platoon is determined by the Cooperative Adaptive Cruise Control (CACC) technology [18]. The

CACC is an enhancement to ACC that introduces Vehicle-to-Vehicle (V2V) communications,

and allows vehicles to travel in more compact and stable platoons than ACC [5]. Most CACC

systems require the following vehicle to communicate with its nearest preceding vehicle or/and

the leading vehicle of the platoon [5].

Vehicle platooning is achieved by the exchange, in real-time, of information about the longi-

tudinal (i.e. acceleration and braking) and lateral (i.e. steering) control system of the vehicles, as
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well as management protocols that supervise the formation of the platoon, driving manoeuvers

and platoon disengagement [17]. This information is shared by the exchange of Cooperative

Awareness Messages (CAMs) between the connected vehicles. These messages are transmitted

several times per second using the Dedicated Short Range Communication (DSRC) and Wireless

Access in Vehicular Environments (WAVE) technology, based on the IEEE 802.11p standard.

The CAV infrastructure requires secure wireless communication channels in order to ensure

reliable connectivity and safety. Connected vehicles are permanently interconnected by period-

ically broadcasting CAMs. However, these messages are vulnerable to a wide range of cyber

threats, such as eavesdropping, spoofing and modification attacks. For example, a spoofing attack

against the communication between CAVs could allow an attacker to change the distance between

autonomous vehicles within the platoon, disrupting the flow of traffic and increasing the chances

of accident. Moreover, the wireless communication channel is exposed to RF jamming (i.e. radio

signals maliciously emitted to disrupt the legitimate communication) and Denial-of-Service (DoS)

attacks. Jamming against CAMs can be implemented easily, and can disrupt the performance the

platooning [12]. For this reason, it is important to design innovative and robust cyber security

solutions that could successfully protect the technology powering CAVs against cyber-attacks.

The scope of this FLOURISH final technical progress report is the description of an Intrusion

Detection System (IDS) based on Machine Learning (ML) developed to detect Spoofing and

Jamming attacks in a CAV environment, with especial focus on vehicles platooning commu-

nication. The detection engine of the proposed IDS is based on the ML algorithms Random

Forest (RF), k-Nearest Neighbour (k-NN) and One-Class Support Vector Machine (OCSVM),

as well as the use of data fusion techniques in a cross-layer approach. The presented IDS has

been developed using the R language. Moreover, one of the main priorities for this reporting

period has been the development of classification techniques that could produce a measure of

confidence or probabilistic classification results, instead of a binary classification (Attack or No

Attack), for complete integration with the wider FLOURISH incident response framework.

II. PROJECT ACHIEVEMENTS

• Development of a novel cross-layer IDS for CAV platooning.

• Simulation in Veins of a CAV platooning environment.

• Simulation of a spoofing attack and a reactive jamming attack.
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• Training and Testing datasets gathering, and extraction of a cross-layer set of features.

• Implementation of three ML algorithms (i.e. RF, k-NN and OCSVM) in R language.

• Modification of the ML algorithms to produce probabilistic classification results for com-

plete integration with the wider FLOURISH incident response framework.

• Extensive IDS evaluation with data comprising two types of attacks, spoofing and jamming.

III. SIMULATION FRAMEWORK

A. Vehicular Network Simulation

The scarcity of publicly available real vehicular communication datasets has been previously

discussed in [10]. Most importantly, no vehicular communication dataset is available comprising

traces of cyber-attacks. Computer simulation software becomes the only available alternative to

conduct cyber security research in the area of connected vehicles.

In order to evaluate the efficiency of the developed IDS against different type of attacks, the

vehicular network simulator Veins [6] has been considered. This open source framework for

running vehicular network simulations is based on two well-known simulators, OMNET++ [2]

and SUMO [1]. OMNET++ is an extensible, modular, component-based C++ simulation library

and framework, primarily for building network simulations. SUMO is a road traffic simulator

is an open source, highly portable, microscopic and continuous road traffic simulation package

designed to handle large road networks. Veins includes a comprehensive suite of models to make

vehicular network simulations as realistic as possible, without compromising performance. The

GUI and IDE of OMNeT++ and SUMO can be used for quickly setting up and interactively

running simulations. Furthermore, instead of using the existing PHY layer simulator in OM-

NET++, we have integrated the tool GEMV [14], a geometry-based efficient propagation model

for V2V communication, into Veins. This simulation framework combining Veins and GEMV

was previously presented in [8], and allows realistic simulations.

The simulated CAV system comprises of a platoon of four connected vehicles, whose motion

is determined by the CACC technology [18]. As described in the Introduction, most CACC

systems require the following vehicle to communicate with its nearest preceding vehicle or/and

the leading vehicle of the platoon. As represented in Figure 1, the leading vehicle (Veh1) and

following second vehicle (Veh2) represent the Receiver (Rx) and Transmitter (Tx) of messages,
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respectively. The third vehicle (Veh3) is the attacker that conducts a reactive jamming attack,

and the fourth vehicle (Veh4) is the attacker that conducts the spoofing attack.

Figure 1: Schematic representation of the vehicles platooning topology: Receiver vehicle (Veh1),

Transmitter vehicle (Veh2), Jammer vehicle (Veh3), and spoofing vehicle (Veh4).

Figure 2 shows a close-up view of the Erlangen city, a provincial city in Germany, used to

conduct the simulations of the platoon of vehicles scenario with SUMO. All connected vehicles

periodically broadcast CAMs, known as beacon messages, in order to inform neighbouring

vehicles of their presence. The experimental results analysis presented in this work focus on

assessing the effect of the different attacks in the communication between the Tx and Rx vehicles.

B. Spoofing Attack in V2V Communications

The broadcast nature of the wireless communication poses serious privacy issues as it exposes

the CAM transmission to eavesdropping. It is feasible for an attacker to track the vehicles move-

ment by eavesdropping the communication channel. One of the mechanisms that the protocol

uses to protect CAMs from eavesdropping is by anonymising the messages and the use frequently

changing certificates, known as pseudonym certificates to sign the CAMs [16]. However, despite

the use of these mechanisms, the Node ID and the MAC address of sender in the WAVE Service

Advertisement (WSA) frame can be modified by a spoofer, Figure 3.

For the simulated attack scenario, initially, the Tx and Rx vehicles have a wireless connection

established using the IEEE 802.11p MAC protocol, and drive in a platoon formation. The attacker

Veh4 follows the Tx and Rx vehicles. When the distance between Veh4 and Veh2 is 45m, the

attacker intercepts the Node ID and MAC address of Veh2 from the broadcasting CAMs. The
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Figure 2: Close-up view of the Erlangen city map used for conducting the simulations. The four

vehicles platooning are marked in green, moving south along the road.

Figure 3: WAVE Service Advertisement (WSA) frame format [4].

attacker exploits these fields to transmit false GPS location coordinates within the CAMs, which

misdirects the platoon of connected vehicles to an incorrect location. Figure 5 shows a comparison

between the RSSI values and the distance between the Tx and Rx vehicles during the first two

stages of the simulation (i.e. the initial period of normal traffic and the spoofing attack).



6

Figure 4: Spoofing Attack Scenario

Figure 5: RSSI measurements during the normal operation and spoofing attack

C. Jamming Attack in V2V communications

For the evaluation of the jamming attack scenario, a reactive radio frequency jammer has

been considered. The RF jamming targets the IEEE 802.11p Orthogonal Frequency Division

Multiplexing (OFDM) based PHY layer operating in the 5.85-5.925 GHz unlicensed national

information infrastructure band, with 10 MHz bandwidth. In Figure 6b shows the standard

protocol WAVE IEEE 802.11p OFDM frame format, which consists of the OFDM PHY Layer

Convergence Protocol (PLCP) preamble, PLCP header, PLCP Service Data Unit (PSDU), tail

bits, and pad bits. In the PLCP preamble field, the preamble consists of ten identical short

training symbols and two identical long training symbols. The OFDM signal has a fixed shape
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in the time domain and lasts Tconst = 64µs. Before the next OFDM signal can be transmitted,

there is an idle time of Tprep = 10µs required to set up the next transmission.

The jammer aims to block completely the communication between the pair of the Tx and Rx

vehicles by transmitting in a reactive manner upon the detection of IEEE 802.11p frames in the

communication channel, causing a DoS attack. The reactive jammer starts the transmission of a

CAM using OFDM signal with QPSK modulation upon sensing energy above a certain threshold.

This threshold has been empirically set to −75 dBm for a certain time of Tdetect = 1.2µs as a

good tradeoff between the jammer sensitivity and false transmission detection rate. The reactive

jammer starts transmitting when it is located at a distance of 35m from Veh1. Therefore, the Rx

vehicle receives a combined signal from the jammer and the Tx vehicle with the form:

~y = h1~x+ h2~s+ ~w (1)

where ~y is the combined received baseband signal at the Rx vehicle, h1 is the wireless channel

between the Tx and Rx vehicles, h2 is the wireless channel between the jammer Veh3 and the

Rx vehicle, ~x is the valuable signal sent by the transmitter, ~s is the jamming signal sent by the

jammer and ~w is white Gaussian noise. The total reaction Treaction is the sum of the detection

time Tdetect = 1.2µs and the preparation time Tprep = 10µs. For the discussion of the results,

we consider that the overall reaction time is, on average, 16.2µs.

Although, the jamming misses the beginning of the IEEE 802.11p preamble, this noise signal

overlaps with the PLCP, MAC and WSMP header of the IEEE 802.11p frame sent from Tx to

Rx, as represented in Figure 6a. Because of the reactive jamming, the Rx vehicle cannot process

the CAM from the Tx vehicle due to insufficient SNIR.

IV. INTRUSION DETECTION SYSTEM FOR CAV

A. Probabilistic IDS

An IDS is a fundamental element of security, aiming at identifying evidence of attacks or

indications of suspicious activities in the system under protection. The use of ML techniques

have gained wide interest in the area of network security and intrusion detection. ML-IDSs are

based on models that allow the classification of the analysed information [15]. ML-IDS has been

highly effective in a wide variety of classification problems. In the area of network security, the

use of ML techniques has proven to improve the accuracy of an IDS. We propose to use this

approach into the area of CAV communication security.
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Figure 6: Reactive jamming against IEEE 802.11p frames.

One of the main priorities of this project has been the development of classification techniques

that can produce a measure of confidence or probabilistic classification result, instead of a

binary classification (Attack or No Attack). This has been achieved for the three considered ML

algorithms, using R language. Figure 7 shows the results generated by one of the classification

algorithms when analysing a dataset comprising PHY jamming attacks. This is a showcase

example of the IDS output. The first column in Figure 7 represents the index of the data instance;

the second column represents the probabilistic result for the No Attack class; and the third

column represents the probabilistic result for the Attack class. Hence, the first row indicates that,

according to the IDS, the 130th data instance is No Attack with 97% confidence, and Attack

with 3% confidence. This figure also shows a correct attack detection in the 189th data instance,

where the data is classified as Attack with 58% confidence.

B. Machine Learning Techniques

For this work, we propose the use of the supervised ML techniques k-Nearest Neighbours

(k-NN) and Random Forests (RF) for the attack classification process. Additionally, experiments

using the semi-supervised ML technique One-Class Support Vector Machine (OCSVM) have

also been conducted.
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Figure 7: Probabilistic classification results generated by the algorithm RF: Each column

represents the index, the confidence in No Attack, and the confidence in Attack, respectively.

Figure 8: Example of k-NN classification. The green circle sample needs to be classified as one

of the classes. If k = 1 (inner circle), the sample is classified as class 1, whereas, if k = 3 (outer

circle), the sample is classified as class 2 [3].

The k-NN is a simple ML technique for pattern recognition, based on feature similarity. As

represented in Figure 8, the k closest samples to the object to classify in the feature space are

selected as an input, where k is a positive integer. The classification decision is based on a voting

process among the k closest samples to the object according to the Euclidean distance.



10

The RF is a supervised learning algorithm, based on decision tree models that split a subset

of features at training time and outputting the class that has the majority votes of the classes of

the individual trees. The general idea of the bagging method is that a combination of learning

models increases the overall result. It builds multiple decision trees and merges them together

to get a more accurate and stable prediction. One big advantage of RF is that it can be used for

both classification and regression problems, which form the majority of current ML systems [9].

The OCSVM is an effective semi-supervised classification technique that constructs the clas-

sification model of normal behaviour during the training process using only one type of samples

(i.e. training datasets comprising of only non-malicious data). This feature makes OCSVM an

ideal classification technique when only non-malicious training datasets are available. The goal

of an OSVM is to find the optimal separating hyperplane which maximises the margin of the

training data and minimises the chance of accepting outliers [13]. This technique is represented

in Figure 9.

Figure 9: OCSVM maps input data into a high dimensional feature space

C. Data Fusion Techniques

Each of the classification algorithms is able to generate accurate results when implemented

independently. However, the combined use of these algorithms may help improve the overall

performance of the proposed IDS. Different methodologies were evaluated to asses whether the

classification results could be improved, for instance, by applying data fusion techniques.
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Ensemble learning has been used to combine the outputs from different classification tech-

niques. Ensemble learning is the process in which multiple classifiers are strategically selected

and combined in order to solve a particular computational intelligence problem. Ensemble

learning is primarily used to improve the classification performance of a model. Commonly used

ensemble learning algorithms are used. One of commonly used ensemble learning algorithms is

known as Bagging. In this algorithm, bootstrapped replicas of the training data for each classifier

are used. During the last step of Bagging, the majority voting combination rule is used. Since

the intended output of the IDS is a probabilistic IDS, the conditional probabilities are estimated

for each classifier in the presented IDS using the Bayesian rule as data fusion technique.

D. Metrics Used for Detection

The presented IDS uses metrics from both, the PHY and APP layers. From the PHY layer

we extract the Received Signal Strength Indication (RSSI), the Signal to Interference and Noise

Ratio (SINR) and the Packet Delivery Ratio (PDR). From the APP layer we extract the Relative

Speed (∆u) and the GPS coordinates. All these metrics are used in a cross-layer approach to

improve the detection accuracy of the detection system. All the above metrics are presented

in Table I. Furthermore, for the training-testing procedure of the proposed IDS, the data have

divided into 70% for training and 30% for testing. This division has been randomised with a

data splitting procedure in R language.

Table I: Metrics that are jointly processed by the classification algorithms

ID Model Feature Short Description

1 ∆u Estimated relative speed between Jx-Rx (m/sec.)

2 GPS cords GPS coordinated in x-axis, y-axis indicating the location

3 RSSI Signal Strenght Indicator (dBm)

4 SINR Signal Quantity Indicator (dB)

5 PDR Packet Delivery Ratio

The Relative Speed (∆u), introduced in [7], indicates the relative speed between an attacker

and the receiver Veh1:

∆uA = |~uA − ~uRx| (2)
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where ~uA, ~uRx are the speed of the attacker and the receiver, respectively. The metric ∆u can

be effectively estimated by the RF signals interchange in the PHY layer. The novelty of this

metric is that it can be estimated by the physical properties of the wireless channel, using the

effect of the Doppler phenomenon. For the jamming attack, we use again the Doppler effect in

order to estimate the ∆u between the jammer and the receiver from the combined value of the

useful and the jamming signal at the receiver, as described in [11].

V. EXPERIMENTAL EVALUATION

A. Experimental Evaluation Description

We have developed an experimental simulation testbed using Veins to evaluate the proposed

IDS. The simulation comprises a flow of four connected vehicles in a platoon formation. This

simulation consists of 800 timesteps, of which 300 timesteps correspond to the normal operation

of the system, 200 timesteps correspond to spoofing attack and the remaining 300 timesteps

correspond to jamming attack.

In order to show the effect of the different attacks in the communication between the Tx and

Rx vehicles during the simulation, the two metrics Throughput and Packet Error Rate (PER)

have been plotted in Figures 10 and 11, respectively. The Y-axis of the figures represent the

throughput in Mbps and the PER in percentage, whereas the X-axis of the figures represent

the time in seconds. The normal (i.e. without attack) communication between the Tx and Rx

vehicles is represented in pink, the spoofing attack is represented in blue, and the jamming

attack is represented in green. The normal communication between the Tx and Rx vehicles

occurs in two periods, between the time interval 15-25 second, and the time interval 75-95

seconds. The spoofing attack is launched during the time interval 25-45 seconds. Finally, the

jamming attack is launched during the time interval 45-75 seconds.

As can be seen in Figure 10, the average throughput for the normal communication is 18

Mbps, approximately. When the spoofing attack is launched, the average throughput droops to 10

Mbps. This change in the throughput clearly shows that the modification of the GPS coordinates

and speed values within the CAM messages, which has a clear effect upon the communication

between the connected vehicles. Even more noticeable is the effect of the reactive jamming attack.

During the duration of this attack, the average throughput reaches 0.5 Mbps, which makes the
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Figure 10: Throughput (Mbps) of the communication between the Tx and Rx vehicles during the

experimental simulation. The normal communication without attack in pink, spoofing attack in

blue, and jamming attack in green.

communication between the Tx and Rx vehicles almost impossible. The effect of both attacks

is also shown in Figure 11. In this case, the PER(%) for the normal communication is 0%,

approximately. When the spoofing attack is launched, the average PER droops to 40%. During

the duration of the reactive jamming attack, the average PER reaches 100%. Additionally, the

Packet Delivery Ration (PDR) achieved in relation to Signal Interference Noise Ratio (SINR)

for the normal communication and for duration of each attack are presented in Figures 12a, 12b,

and 12c, respectively. The Y-axis of the figures represent the PDR in percentage, whereas the

X-axis of the figures represent the SINR in dB.

In the simulation, the Tx vehicle broadcasts a CAM message every 0.1 seconds in order to

inform the Rx about its current GPS location and speed. During the spoofing attack, Veh4 also

broadcasts a CAM message every 0.1 seconds, using the ID of Veh2, in order to inform the Rx

about an incorrect GPS location and speed value. During the jamming attack, Veh3 sends CAM
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Figure 11: Packet Error Rate (%) of the communication between the Tx and Rx vehicles during

the experimental Simulation. The normal communication without attack in pink, spoofing attack

in blue, and jamming attack in green.

messages in a reactive mode in order to cause a collision with the communication between the

Tx and Rx vehicles. Every time the Tx vehicle transmits a CAM message, Veh3 also transmits

a CAM message to cause a collision.

The experiments have been conducted using the simulation parameters presented in Table II:

The minimum distance between the jammer from Veh1 (minDistJx−Rx), the minimum distance

between Veh1 and Veh2 (minDistTx−Rx), the minimum distance between the spoofer and Veh1

(minDistV eh4−Rx), Transmission Signal Strength, Packet Length, and Data Rate. Both vehicles

Veh1 and Veh2 move at a maximum speed of 10m/s, whereas both vehicles Veh3 and Veh4

move at a maximum speed of 25m/s. The jammer starts transmitting within a radius of 35m

from Veh1. This simulation replicates a realistic example, in which the attackers show distinctive

moving behaviours than the legitimate vehicles.

B. Spoofing Attack Detection Results

The experiments to evaluate the efficiency of the developed IDS have been conducted using

two-class training and testing datasets. The ML techniques have been trained with both Attack
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Figure 12: Comparison between PDR and SINR for communication between the Tx and Rx

vehicles: a) During normal communication, b) spoofing attack, and c) jamming attack.
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Table II: Simulation Parameters

Evaluation Parameters in Veins Simulator Values

minDistTx,Rx 25m

[CW [min], CW [max]] [3,7]

Vehicle’s Transmission Range 130-300m

Transmission Signal Strength 100mW

Packet length 500 bits

Data rate 18Mbps

minDistV eh4−Rx 45m

minDistJx−Rx 35m

fc 5.9GHz

CS range of 802.11p protocol 1000m

and No Attack instances. The initial set of experiments have been conducted using single metric

approach only, using the metrics described in Section IV-D.

The Table III presents the classification accuracy results when using single feature for each

of the supervised ML techniques. It can be observed that using metrics from the PHY layer

achieve the highest results, reaching over 91% accuracy in both techniques. Focusing on the

metrics from the APP layer, the accuracy drops to 72.43% when using RF to analyse the metric

Position Y (i.e. longitudinal control). Furthermore, it has been proven that the use of the k-NN

algorithm outperforms the accuracy of the RF algorithm for the majority of metrics. The results

have been plotted using a ROC curve for each single feature in Figure 13 when using the k-NN

algorithm, and in Figure 14 when using the RF algorithm.

Table III: Accuracy of the cross-layer classification

Metric k-NN Random Forest

RSSI 95.88% 95.47%

SINR 91.77% 92.18%

PDR 92.59% 94.24%

Estimated ∆u 86.83% 78.6%

Position Y 84.77% 72.43%

Position X 94.24% 92.59%
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Figure 13: Spoofing Attack Detection: ROC curves for single feature spoofing attack classification

using the k-NN algorithm.

Figure 14: Spoofing Attack Detection: ROC curves for single feature spoofing attack classification

using the RF algorithm.

Focusing on a multi-metric approach, using only features from the APP layer with the k-NN

algorithm, the classification accuracy increases to 98%. On the other hand, the classification
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accuracy results for the k-NN algorithm when using features from the PHY layer reaches 99%.

The comparison of these results has been shown in Figure 15 using ROC curves.

Figure 15: Spoofing Attack Detection: ROC curves comparison for multi-metric approaches,

using metrics from the PHY and the APP layers, using the k-NN algorithm.

Finally, the IDS that we have developed focuses on a cross-layer approach, using metrics from

both the PHY and the APP layers. The combination of all the considered features generate the

best attack detection accuracy overall. By using the k-NN algorithm, the IDS generates 99.59%

detection accuracy, with only one false positive alert. This result is represented in Figure 16.

C. Jamming Attack Detection Results

For the jamming attack detection, we have conducted two versions of the reactive Jamming

attack. One generic version that transmits activity is sensed on the wireless channel. The other

version is an intelligent reactive jamming attack that reduces the number of intended collisions

in order to minimise its exposure to be detected by an IDS. For the former version of the

jamming attack, the developed IDS achieves 100% accuracy with cross-layer approach, whereas

IDS reaches 95% accuracy detecting the intelligent jamming version. These detection results are

achieved by both ML techniques.
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Figure 16: Spoofing Attack Detection: ROC curve cross-layer approach, using all the considered

metrics from the PHY and APP layers, using the k-NN algorithm.

D. Multi-Attack Detection Results

In order to evaluate the adaptability of the presented IDS, additional experiments have been

conducted. These experiments combine the two implemented attacks, spoofing and jamming. By

using the k-NN algorithm with a cross-layer approach, the IDS generates almost perfect detection

(i.e. 99% accuracy), whereas the RF algorithm produces 4 false alarms. Figure 17 represents the

detection results when both attacks are included in the training and testing datasets. As can be

seen, worst classification results are generated with the two implemented attacks are considered.

E. Data Fusion Techniques

In the previous results, it is shown that the k-NN algorithm produces almost perfect detection,

with 99% accuracy detecting spoofing attack. In Figure 18a, the ROC succeed by the k-NN are

compared with the RF algorithm ROC for detecting the spoofing attack. In subsequent Figure 18b

is also added the ROC succeed by the Data Fusion technique. This approach combined the

outcome of the two supervised ML classifiers. It is observed that it achieves the same accuracy

with the k-NN algorithm, which in this case has an almost perfect result.
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Figure 17: Multiclass results with class by class ROCs for the RF classifier

F. Novel Attack Classification

This section evaluates the performance of the IDS detecting attacks not included in the training

process. For this purpose, the IDS has been trained using datasets that comprise normal data

and instances of one attack (i.e. either spoofing or jamming). Then, the testing process has

been conducted using datasets comprising both attacks along with normal data. In the first set of

experiments, only normal and jamming data were use for training. By using this training dataset,

the IDS produced an accuracy of 92%. On the other hand, by using only normal and spoofing

data for training, a drop in the accuracy of the IDS was observed, reaching 78% accuracy. The

empirical results are illustrated as ROC curves in Figure 19, where the pink graph represents the

results for training with Jamming, and the blue dashed graph represents the results for training

with spoofing. As tabulated in the confusion matrix in Table IV, in the case of training with

jamming attack, the IDS generates 54 False Negatives (FNs) and no False Positive (FPs) alarm.

On the other hand, using the spoofing for training, the IDS generates 166 FNs and no FP alarm,

as tabulated in the confusion matrix in Table V. In both tables, the rows represent the ground

truth and the columns the IDS classification decision.
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(a) k-NN, RF comparison ROCs for detecting spoofing attack
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(b) Data Fusion, k-NN, RF comparison ROCs for detecting spoofing attack

Table IV: Confusion matrix - IDS results for training with Jamming attack.

Scenario No Attack Attack

No Attack 299 0

Attack 54 414

Table V: Confusion matrix - IDS results for training with Spoofing attack.
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Figure 19: Novel attack classification ROC curves; pink graph represents results for training with

Jamming, blue dashed graph represents results for training with spoofing.

Scenario No Attack Attack

No Attack 299 0

Attack 166 302

Further experiments have been conducted to assess how the amount of malicious traffic

within the training data can affect the classification performance of the IDS. Specifically, these

experiments have been conducted using only the jamming attack with the RF algorithm. The

amount of malicious data within the training dataset has been gradually increased from 33%

to 50%. As can be seen in Figure 20, the largest the percentage of malicious traffic within the

training dataset, the highest the accuracy of the IDS. The accuracy reaches 73%, 87% and 92%

accuracy using 33%, 43% and 50% of malicious data, respectively.

G. Detection using Normal Data Training

The supervised ML algorithms require training datasets comprising Attack and No Attack

instances. In cases where only normal (i.e. non-malicious) data is available, the use of semi-

supervised ML algorithms is required. This section describes a final set of experiments focus

on the use of the semi-supervised ML algorithm OCSVM. The training dataset is 50% smaller
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Figure 20: Accuracy result: Variable jamming data percentage within training dataset.

than the testing dataset, and comprises normal data only. The training dataset comprises 20%

of malicious data. As tabulated in the confusion matrix in Table V, the IDS generates 40 FNs

and 41 FP alarms. In this table, the rows represent the ground truth and the columns the IDS

classification decision.

Table VI: Confusion matrix - OCSVM results after training with No Attack data.

Scenario No Attack Attack

No Attack 527 41

Attack 40 200

VI. CONCLUSIONS

In this report describe an IDS based on ML techniques, developed using the R language, and

designed to detect Spoofing and Jamming attacks in a CAV environment. The IDS would reduce

the risk of traffic disruption and accident caused as a result of cyber-attacks. The detection engine

of the presented IDS is based on the ML algorithms RF, k-NN and OCSVM. To the best of the

authors knowledge, the proposed IDS is the first in literature that uses a cross-layer approach

to detect both spoofing and jamming attacks against the communication of connected vehicles

platooning. Various features from the APP and PHY layers have been extracted and analysed.
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In order to evaluate the efficiency of the developed IDS against different type of attacks, the

vehicular network simulator Veins [6] has been considered. Although the experiments have been

conducted using datasets from a simulated CAV environment, with vehicles platooning, the same

IDS could be used to detect similar type of attacks launched from fixed location, for example,

from a building on the side of the road.

The empirical analysis proves that both attacks impact on the communication between the

transmitter and receiver vehicles. The two metrics Throughput and PER, were directly affect by

the attacks. Overall, the features from the PHY layer out weight those from the APP layer in

their contribution the classification process, helping to detect correctly between Attack and No

Attack using a cross-layer approach. In order to verify the adaptability of the proposed IDS,

multiple set of experiments have been conducted. The presented results shows that the proposed

IDS can efficiently detect both attacks with high accuracy. One of the main priorities for this

work has been the development of classification techniques that could produce a measure of

confidence or probabilistic classification result, instead of a binary classification (i.e. Attack or

No Attack), for complete integration with the wider FLOURISH incident response framework.
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